Photovoltaic

-‘*cims.f.jopis EIHp;M

Thin Film Photovoltaics by Spectroscopic Ellipsometry

plice tion Report 4

What do we mean by photovoltaics? First used in about 1890, the word has two parts: photo, derived from
the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. So, photovoltaics could
literally be translated as light-electricity. And that's what photovoltaic (PV) materials and devices do - they con-
vert light energy into electrical energy (Photoelectric Effect), as French physicist Edmond Becquerel discovered
as early as 1839.

Commonly known as solar cells, individual PV cells are electricity-producing devices made of semiconductor
materials. PV cells come in many sizes and shapes - from smaller than a postage stamp to several inches
across. They are often connected together to form PV modules that may be up to several teet long and a few
feet wide. Modules, in turn, can be combined and connected to form PV arrays.

Did you know that PV systems are already an important part of our lives? Simple PV systems provide power
for many small consumer items, such as calculators and wristwatches. More complicated systems provide
power for communications satellites, water pumps, and the lights, appliances, and machines in some people's
homes and workplaces. Many road and traffic signs along highways are now powered by PV. In many cases,
PV power is the least expensive form of electricity for performing these tasks.

The Photoelectric Effect Light and the PV Cell

The photoelectric effect is the basic physical process by which a PV
cell converts sunlight info electricity. When light shines on a PV cell,
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: The sun emits almost all of jts energy in a range of wavelengths
fi— lunction from about 2x107 to 4x10°° meters. Most of this energy is in the

visible light region. Solar cells respond differently to the different
P e . wavelengths of light. In summary, light that is too high or low in en-
T _i_ ergy is not usable by a cell to produce electricity. Rather, it is trans-

formed into heat.

Bandgap Energies of Semiconductors and
Light

Only photons with a certain level of energy can free electrons in
To induce the built-in electric field within a PV cell, two layers of the se.mlconducfor'maferlcl from The!ro’romlc bonds to produce an
somewhat differing semiconductor materials are placed in contact electric current. This level of energy is known as the «bandgap en-
with one another. One layer is an «n-fype» semiconductor with an €1y To free an electron, the energy of a photon must be at least
abundance of electrons, which have a negative electrical charge, @S great as the bandgap energy. However, photons with more en-
The other layer is a «p-type» semiconductor with an abundance of ~ €r9Y than the bondgop energy w.|||| gxpend that extra amount as
«holes», which have a positive electrical charge. Sandwiching these heat when freeing electrons. So, it's important f?_r a EV cell to be
together creates a p/n junction at their inter?oce thereby creating «tuned»-through slight modifications to the silicon's molecular
an electric field.
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structure-to optimize the photon energy. A key to obtaining an effi-
cient PV cell is to convert as much sunlight as possible into electric-
ity.

Crystalline silicon has a bandgap energy of 1.1 electron-volts (eV).
(An electron-volt is equal to the energy gained by an electron when
it passes through a potential of 1 volt in a vacuum.) The bandgap
energies of other etfective PV semiconductors range from 1.0 to
:].6 eV. In this range, electrons can be freed without creating extra

eat.

The photon energy of light varies according to the different wave-
lengths of the light. The entire spectrum of sunlight, from infrared
to ultraviolet, covers a range of about 0.5 eV to about 2.9 eV. For
example, red light has an energy of about 1.7 eV, and blue light
has an energy of about 2.7 eV. Most PV cells cannot use about
55% of the energy of sunlight, because this energy is either below
the bandgap of the material or carries excess energy.

< L.l eV

< .43 eV < 1.7 eV

Different PV materials have different energy band gaps. Photons with
energy equal to the band gap energy are absorbed to create free
electrons. Photons with less energy than the band gap energy pass
through the material.

Thin Film Solar Cells

Thin film solar cells can be made from:

* Polycrystalline thin films-including copper indium diselenide
(CIS), cadmium telluride (CdTe), and thin-film silicon

* Single-crystalline thin films-including high-efficiency material
such as gallium arsenide (GaAs)

Polycrystalline Thin Film

Thin film cells use much less material: the cell's active area is usu-
ally only 1 to 10 micrometers thick, whereas thick films typically are
100 to 300 micrometers thick. Also, thin-film cells can usu0|ry be
manufactured in a large-area process, which can be an automat-
ed, continuous production process. Finally, they can be deposited
on flexible substrate materials.

Unlike most single-crystal cells, a typical thin-film device doesn't
have a metal grid for the top electrical contact. Instead, it uses a
thin layer of a transparent conducting oxide, such as tin oxide.
These oxides are highly transparent and conduct electricity very
well. A separate antireflection coating might top off the device, un-
less the transparent conducting oxide serves that function.

The typical polycrystalline thin film cell has a very thin (less than
0.1 micron) layer on top called the «window» layer. The window
layer's role is to absorb light energy from only the high-energy end
of the spectrum. It must be thin enough and have a wide enough
bandgap (2.8 eV or more) to let all available light through the in-
terface (heterojunction) to the absorbing layer. The absorbing layer
under the window, usually doped p-type, must have a high absorp-
tivity (ability to absorb photons) for high current and a suitable
band gap to provide a good voltage. Still, it is typically just 1 to 2
microns thick.
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Polycrystalline thin-film cells have a heterojunction structure, in which
the top layer is made of a different semiconductor material than the
bottom semiconductor layer. The top layer, usually n-type, is a window
that allows almost all the light through to the absorbing layer, usually p-
type. An «ohmic contact» is often used to provide a good electrical
connection to the substrate.

Thin film PV structures characterized by
spectroscopic ellipsometry

Proper understanding of thin film materials and thin film stack, tai-
loring numerous properties of thin films required for an efficient so-
lar cell demands a range of characterization techniques.
Spectroscopic ellipsometry is an optical technique used for the
measurement of thin film thickness and optical constants. The
technique provides the advantages to be non-destructive, fast, pre-
cise to the Angstrom level, and the capability to measure multi-lay-
er stacks.

1 Characterization of anti-reflective coatings

Silicon is a shiny gray material and can act as a mirror, reflecting
more than 30% of the light that shines on it. To improve the con-
version efficiency of a solar cell, antireflection (AR) coating is ap-
plied to the top layer of the cell helping to optimize light
absorption. Single AR layer or multiple AR layers basically use SiO,
and TiO, materials. Another way to reduce reflection is to texture
the top surface of the cell, which causes reflected light to strike a
second surface before it can escape, thus increasing the probabili-
ty of absorption.
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To make an efficient solar cell, we try to maximize absorption, minimize
reflection and recombination, and thus maximize conduction.
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Experimental Conditions

- Spectroscopic Ellipsometer: UVISEL
- Spectral range: 0.75 - 5.0 eV < 248 - 1653 nm
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One can notice that the bottom of the TiO, film exhibits a higher
refractive index than the top of the film.

2 Thickness mapping of SiN, thin film

Experimental Conditions

- Spectroscopic Ellipsometer: UVISEL
- Spectral range: 0.6 - 6.5eV < 190 - 2100 nm
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3 Characterization of TCO electrodes film

The properties of the contacts and windows layers are critical to
device performance.

At least one contact must be electrically conducting and transpar-
ent to photons in the speciral range where the absorber creates
carriers. Transparent conducting oxides are the material of choice
for this purpose (ZnO, ITO, TiO,, SnOy).

The highest efficiency devices rely on diffusion to transport carriers
to the junction of collection.

Experimental Conditions

- Spectroscopic Ellipsometer: UVISEL
- Spectral range: 0.6 - 4.0 eV < 306 - 2066 nm

Full structure characterization
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SiCxOy Optical Constants
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Experimental Conditions

- Spectroscopic Ellipsometer: UVISEL
- Spectral range: 0.75 - 5.0 eV < 248 - 1653 nm
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Experimental Conditions

- Spectroscopic Ellipsometer: UVISEL
- Spectral range: 0.6 - 6.5eV < 190 -2100 nm

Full structure characterization
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4 Characterization of Micro crystalline & Amorphous
Silicon thin films

Microstructure of silicon films can be varied from one exireme of
amorphous/nanocrystalline to highly oriented and/or epitaxial

growth.

The characterization of silicon thin films by spectroscopic ellipsom-

etry provides a wealth of information such as:
- Optical bandgap
- Inhomogeneities of silicon films (gradient)

- The shape of optical constants is directly linked to the microstruc-

ture of silicon materials
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Experimental Conditions Experimental Conditions
- Spectroscopic Ellipsometer: UVISEL - Spectroscopic Ellipsometer: UVISEL
- Spectral range: 1.14 - 3.54 eV < 350 - 1088 nm - Spectral range: 0.6 - 4.2 eV < 295 - 2066 nm
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6 Polymer solar cells
ZnO Optical Constants
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Spectroscopic ellipsometry is an ideal technique to characterize
fiﬁn thicknesses and optical constants and optical bandgap for
photovoltaic applications. Spectroscopic ellipsometers are also
sensitive to the presence of rough overlayer and graded optical
constants.

The technique provides the advantage to be fast, simple to operate
and non-destructive for the characterization of the samples.
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